
Measures of comparison for move plot 3
evaluation.RdThis function calculates measures of comparison after generalised orthogonal Procrustes Analysis
is performed in moveplot3. Orthogonal Procrustes Analysis is used to compare a target to a testee configuration.
The following measures are calculate: Procrustes Statistic (PS), Congruence Coefficient (CC), Absolute Mean Bias (AMB),
Mean Bias (MB) and Root Mean Squared Bias (RMSB).
Value
- eval.list
Returns a list containing the measures of comparison for each level of the time variable.
- fit.plot
Returns a line plot with the fit measures that are bounded between zero and one: PS and CC. A small PS value and large CC value indicate good fit.
- bias.plot
Returns a line plot with bias measures taht are unbounded: AMB, MB and RMSB. Small values indicate low bias.
Examples
data(Africa_climate)
data(Africa_climate_target)
bp <- biplotEZ::biplot(Africa_climate, scaled = TRUE) |> biplotEZ::PCA()
results <- bp |> moveplot3(time.var = "Year", group.var = "Region", hulls = TRUE,
move = FALSE, target = NULL) |> evaluation()
results$eval.list
#> [[1]]
#> Target vs. 1950
#> PS 0.1323
#> CC 0.9697
#> AMB 1.2717
#> MB 0.0000
#> RMSB 1.8506
#>
#> [[2]]
#> Target vs. 1960
#> PS 0.0982
#> CC 0.9763
#> AMB 0.4414
#> MB 0.0000
#> RMSB 0.5779
#>
#> [[3]]
#> Target vs. 1970
#> PS 0.0925
#> CC 0.9798
#> AMB 0.4373
#> MB 0.0000
#> RMSB 0.5701
#>
#> [[4]]
#> Target vs. 1980
#> PS 0.0771
#> CC 0.9813
#> AMB 0.3903
#> MB 0.0000
#> RMSB 0.5501
#>
#> [[5]]
#> Target vs. 1990
#> PS 0.0812
#> CC 0.9793
#> AMB 0.4177
#> MB 0.0000
#> RMSB 0.5446
#>
#> [[6]]
#> Target vs. 2000
#> PS 0.1604
#> CC 0.9636
#> AMB 0.5263
#> MB 0.0000
#> RMSB 0.6564
#>
#> [[7]]
#> Target vs. 2010
#> PS 0.0797
#> CC 0.9813
#> AMB 0.4337
#> MB 0.0000
#> RMSB 0.5428
#>
#> [[8]]
#> Target vs. 2020
#> PS 0.0695
#> CC 0.9814
#> AMB 0.3914
#> MB 0.0000
#> RMSB 0.5069
#>
results$fit.plot
results$bias.plot
data(Africa_climate)
data(Africa_climate_target)
bp <- biplotEZ::biplot(Africa_climate, scaled = TRUE) |> biplotEZ::PCA()
results <- bp |> moveplot3(time.var = "Year", group.var = "Region", hulls = TRUE,
move = FALSE, target = Africa_climate_target) |> evaluation()
results$eval.list
#> [[1]]
#> Target vs. 1950
#> PS 0.2112
#> CC 0.9556
#> AMB 0.4976
#> MB 0.0000
#> RMSB 0.6549
#>
#> [[2]]
#> Target vs. 1960
#> PS 0.1738
#> CC 0.9559
#> AMB 1.6285
#> MB 0.0000
#> RMSB 2.3374
#>
#> [[3]]
#> Target vs. 1970
#> PS 0.2047
#> CC 0.9521
#> AMB 1.6469
#> MB 0.0000
#> RMSB 2.3450
#>
#> [[4]]
#> Target vs. 1980
#> PS 0.1570
#> CC 0.9604
#> AMB 1.5816
#> MB 0.0000
#> RMSB 2.3185
#>
#> [[5]]
#> Target vs. 1990
#> PS 0.1698
#> CC 0.9603
#> AMB 1.6250
#> MB 0.0000
#> RMSB 2.3322
#>
#> [[6]]
#> Target vs. 2000
#> PS 0.2472
#> CC 0.9451
#> AMB 1.6976
#> MB 0.0000
#> RMSB 2.3489
#>
#> [[7]]
#> Target vs. 2010
#> PS 0.1618
#> CC 0.9635
#> AMB 1.6034
#> MB 0.0000
#> RMSB 2.3178
#>
#> [[8]]
#> Target vs. 2020
#> PS 0.1277
#> CC 0.9712
#> AMB 1.5778
#> MB 0.0000
#> RMSB 2.2826
#>
results$fit.plot
results$bias.plot