This function computes the measures of fit for the biplot. The biplot object is augmented with additional items, which can differ depending on the type of biplot. The measures provide information on the overall quality of fit and the adequacy of representation of variables.

fit.measures(bp)

Arguments

bp

an object of class biplot.

Value

An object of class biplot. The object is augmented with additional items, depending on the type of biplot object.

quality

the overall quality of fit.

adequacy

the adequacy of representation of variables.

For an object of class PCA:

axis.predictivity

the fit measure of each individual axis.

sample.predictivity

the fit measure for each individual sample.

For an object of class CVA:

axis.predictivity

the fit measure of each individual axis.

class.predictivity

the fit measure for each class mean.

within.class.axis.predictivity

the fit measure for each axis based on values expressed as deviations from their class means.

within.class.sample.predictivity

the fit measure for each sample expressed as deviation from its class mean.

For an object of class CA:

row.predictivity

the fit measure for each row of the input matrix individual sample.

col.predictivity

the fit measure for each column of the input matrix individual sample.

Xhat

predicted matrix per row profile

Examples

out <- biplot (iris[,1:4]) |> PCA() |> fit.measures()
summary(out)
#> Object of class biplot, based on 150 samples and 4 variables.
#> 4 numeric variables.
#> 
#> Quality of fit in 2 dimension(s) = 97.8% 
#> Adequacy of variables in 2 dimension(s):
#> Sepal.Length  Sepal.Width Petal.Length  Petal.Width 
#>    0.5617091    0.5402798    0.7639426    0.1340685 
#> Axis predictivity in 2 dimension(s):
#> Sepal.Length  Sepal.Width Petal.Length  Petal.Width 
#>    0.9579017    0.8400028    0.9980931    0.9365937 
#> Sample predictivity in 2 dimension(s):
#>         1         2         3         4         5         6         7         8 
#> 0.9998927 0.9927400 0.9999141 0.9991226 0.9984312 0.9949770 0.9914313 0.9996346 
#>         9        10        11        12        13        14        15        16 
#> 0.9998677 0.9941340 0.9991205 0.9949153 0.9945491 0.9996034 0.9942676 0.9897890 
#>        17        18        19        20        21        22        23        24 
#> 0.9937752 0.9990534 0.9972926 0.9928624 0.9896250 0.9932656 0.9918132 0.9955885 
#>        25        26        27        28        29        30        31        32 
#> 0.9812917 0.9897303 0.9979903 0.9990514 0.9963870 0.9975607 0.9985741 0.9876345 
#>        33        34        35        36        37        38        39        40 
#> 0.9833383 0.9957412 0.9970200 0.9935405 0.9859750 0.9953399 0.9994047 0.9990244 
#>        41        42        43        44        45        46        47        48 
#> 0.9980903 0.9756895 0.9953372 0.9830035 0.9763861 0.9959863 0.9905695 0.9987006 
#>        49        50        51        52        53        54        55        56 
#> 0.9996383 0.9987482 0.9275369 0.9996655 0.9544488 0.9460515 0.9172857 0.9061058 
#>        57        58        59        60        61        62        63        64 
#> 0.9727694 0.9996996 0.8677939 0.8686502 0.9613130 0.9328852 0.4345132 0.9679973 
#>        65        66        67        68        69        70        71        72 
#> 0.7995848 0.9083037 0.7968614 0.5835260 0.7900027 0.8575646 0.8524748 0.6615410 
#>        73        74        75        76        77        78        79        80 
#> 0.9367709 0.8661203 0.8350955 0.8929908 0.8702600 0.9873164 0.9969031 0.6815512 
#>        81        82        83        84        85        86        87        88 
#> 0.8937189 0.8409681 0.7829405 0.9848354 0.6901625 0.8073582 0.9666041 0.6665514 
#>        89        90        91        92        93        94        95        96 
#> 0.6993846 0.9909923 0.9008345 0.9710941 0.8037223 0.9913632 0.9744493 0.7089660 
#>        97        98        99       100       101       102       103       104 
#> 0.9071738 0.9064541 0.9625371 0.9872279 0.9171603 0.9636413 0.9976224 0.9829885 
#>       105       106       107       108       109       110       111       112 
#> 0.9854704 0.9888092 0.8464463 0.9729353 0.9771293 0.9794313 0.9746239 0.9977302 
#>       113       114       115       116       117       118       119       120 
#> 0.9941859 0.9605563 0.8476794 0.9289985 0.9929982 0.9916850 0.9818957 0.9493751 
#>       121       122       123       124       125       126       127       128 
#> 0.9865358 0.8716778 0.9728177 0.9846364 0.9840890 0.9861783 0.9854516 0.9691512 
#>       129       130       131       132       133       134       135       136 
#> 0.9942007 0.9585884 0.9705389 0.9937852 0.9874192 0.9723192 0.9230503 0.9794405 
#>       137       138       139       140       141       142       143       144 
#> 0.8947527 0.9797055 0.9458421 0.9902488 0.9674660 0.9350646 0.9636413 0.9867931 
#>       145       146       147       148       149       150 
#> 0.9500265 0.9470544 0.9688318 0.9886543 0.8735433 0.9281727